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Transient effects associated with the deformation and breakup of a drop following a 
step change from critical to subcritical flow conditions are studied experimentally 
and numerically. In  the experiments, we consider step changes in both the shear rate 
and flow type for two-dimensional linear flows generated in a four-roll mill. 
Numerically we consider step changes in shear rate only for a uniaxial extensional 
flow. Depending upon the degree of deformation prior to the change in flow 
conditions, the drop may either return to a steady deformed shape, or continue to 
stretch a t  a reduced rate, or, for intermediate cases, the drop may break without 
large-scale stretching. This behaviour is a consequence of the complicated interaction 
between changes of shape due to interfacial tension and changes of shape due to the 
motion of the suspending fluid. This mode of breakup is most pronounced for high 
viscosity ratios, because very large extensions are necessary to guarantee breakup 
if the flow is stopped abruptly. For drops that are not too deformed, the sudden 
addition of vorticity to the external flow is characterized by rapid rotation of the 
drop to a new steady orientation followed by deformation and/or breakup according 
to the effective flow conditions a t  the new orientation. Finally, for viscous drops in 
flows with vorticity, it is demonstrated experimentally that breakup can be achieved 
if the initial shape is sufficiently non-spherical even though the same drop could not 
be made to  break in the same flow at any capillary number when beginning with a 
near-spherical shape. 

1. Introduction 
G. I. Taylor’s investigation of the deformation and breakup of liquid droplets 

(1932, 1934) were motivated by an interest in emulsion formation and mixing 
processes. I n  recent years the areas of application have widened and drop 
deformation studies have found use in characterizing the flow-induced deformation 
of flexible bodies, e.g. cells, as well as certain material science problems (Seward 
1974). However, time-dependent deformation associated with the actual frag- 
mentation of the droplet and how this is related to breakup in the presence of time- 
dependent flows has not been carefully studied. An introduction to some qualitative 
features associated with drop breakup in transient flows is presented in this paper. 

The majority of analytical, experimental and numerical studies of drop 
deformation and breakup at low Reynolds numbers have considered the case of a 
single drop suspended in a steady linear flow field with particular atttention given to 
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predicting the steady drop shapes and orientations that result from a balance of 
viscous and interfacial forces. Two excellent review articles concerning much of the 
work prior to 1983 have been written by Acrivos (1983) and Rallison (1984). I n  these 
flows the non-existence of a steady-state shape results in a continuous stretching 
motion of the droplet. In  spite of the fact that this continuous stretching is called 
‘break-up’ and is characterized by a critical value of the capillary number 
(dimensionless shear rate), complete facturing of droplets in steady linear flows has 
been reported by Mikami, Cox and Mason (1975) only for the case of extremely 
elongated, cylindrical droplets that break due to capillary instabilities. 

The only extensive experimental study of transient effects has been reported by 
Grace (1971) who considered both simple shear and planar extensional flows, and 
documented a number of fascinating phenomena, including the effect of abruptly 
stopping the flow (first observed by Taylor 1934), the use of a programmed gradual 
reduction of the shear rate to produce breakup without gross stretching of the drop, 
and a systematic study of the number of drop fragments produced when breakup 
occurs a t  a shear rate that exceeds the critical value. Additional transient 
experiments are described by Torza, Cox & Mason (1972) who report that the 
mechanism for breakup may depend on the rate a t  which the shear rate is increased. 
In a numerical study that is concerned primarily with calculating steady drop 
shapes, Rallison & Acrivos (1978) discuss observations concerned with breakup due 
to the application of a subcritical flow to a drop originally stretched by a stronger 
flow. 

It is clear from the above studies that transient flows play an important role in the 
breakup process, though many qualitative and quantitative questions remain. For 
example: What is the effect of non-spherical initial shape on the capillary number 
necessary to guarantee that the drop does not return to a steady shape? How does 
the drop shape evolve and what is the mode of fragmentation ? What is the effect of 
viscosity ratio? In order to answer some of these questions, we have initiated a 
combined experimental and numerical study of the time-dependent dynamics of 
drop deformation and breakup. In the first part of our investigation (Stone, Bentley 
& Leal 1986), we experimentally examined the time-dependent stretching of a drop 
in steady flows a t  the critical capillary number, as well as the interfacial-tension- 
driven relaxation and breakup processes that result when the flow is stopped 
abruptly with the drop in an elongated state. In  no case did we observe actual 
fragmentation while the flow was maintained. Further, the breakup process that 
occurred for a sufficiently elongated drop when the flow was stopped was not a 
capillary-wave instability, but consisted of the formation and breakoff of bulbuous 
ends of the drop via a deterministic process we described as ‘end-pinching’. The 
second part of our study (Stone & Leal 1989) made use of the boundary-integral 
method to probe numerically this time-dependent breakup phenomena and clearly 
exposed the mechanism for breakup, in addition to explaining the dependence of the 
pinch-off process on viscosity ratio. The experimentally observed drop dynamics 
were reproduced completely with the assumption of a constant interfacial tension. 
In addition, the numerical method was used to explore the effect of including 
finite-amplitude capillary waves on the initial drop shape. These studies, including 
numerically generated velocity fields inside and outside the drop, provide an 
improved understanding of the mechanisms of drop breakup due to interfacial- 
tension-driven motions in an otherwise quiescent fluid. However, this is only a first 
step in understanding more complicated time-dependent flows. 

The novel flow situation examined in this paper is the behaviour of a modestly 



InJEuence of initial deformation on drop breakup 225 

deformed drop in a subcritical time-dependent flow. The term ‘modestly deformed ’ 
refers to a shape that is more deformed than the maximum steady shape, but is not 
highly elongated. We focus experimentally on step changes from the critical capillary 
number (where the drop is slowly extending) to subcritical (weaker) flow conditions, 
either by decreasing the shear rate or by suddenly adding vorticity to the flow. The 
addition of vorticity indirectly decreases the effective shear rate experienced by the 
drop by rotating the drop away from the principal axis of strain of the undisturbed 
flow field. Thus, the effective shear rate (i.e. the local rate of stretching of a fluid 
element orientated in the direction of maximum droplet elongation) is reduced 
(Bentley & Leal 1986b) and, as a consequence, the effective capillary number is 
reduced. The application of a (weak) straining motion to a drop originally stretched 
by a stronger flow involves an interaction between an interfacial-tension-driven flow 
tending to cause relaxation of the drop to a less deformed shape, and the (subcritical) 
extensional flow that tries to continue to elongate the drop. We provide several 
examples of complete breakup in such flows. The boundary-integral method is used 
to extend these experimental observations by probing the details of the flow field 
both external and internal to the drop. 

It should be added that dynamics associated with transient deformation of a 
bubble in axisymmetric extensional flows a t  finite Reynolds numbers have been 
described recently by Kang & Leal (1987) and aspects of the behaviour detailed in 
their study are analogous to observations reported here. There are also a number of 
quite varied processes where interfacial-tension-driven motions similar to those 
illustrated in this paper play an important role. For example, Lasheras, Fernandez- 
Pello & Dryer (1979) have observed breakup of stretched liquid droplets in an 
experimental study of the combination of fuel droplets, and transient effects similar 
to those discussed here may be expected in electrohydrodynamic or magneto- 
hydrodynamic breakup of droplets (e.g. see Torza, Cox & Mason 1971 and 
Sherwood 1988) if the field producing the deformation is time-dependent. 

2. Problem statement 
In  this paper, we report on a combined experimental and numerical investigation 

of drop deformation and breakup in time-dependent extensional flows. To facilitate 
the discussion, it is convenient to discuss the common conditions of experiment and 
theory, and to introduce some basic nomenclature. 

Thus, we consider a neutrally buoyant Newtonian liquid drop with undeformed 
radius, a and viscosity b suspended in a second immiscible Newtonian fluid with 
viscosity y. The viscosity ratio is denoted as h = b/y.  Previous comparisons of 
experimental and theoretical results have demonstrated that the interface for the 
systems studied experimentally can be characterized completely by a constant 
interfacial tension g. I n  addition, the drop Reynolds numbers (based on y) for the 
experiments were O( or smaller, and the numerical work is thus based upon the 
creeping flow approximation. Far from the drop, the undisturbed flow in the theory 
is assumed to vary linearly with position. 

u, = r ( t ) . x  ( 1 )  

where r(t) is the velocity gradient tensor, which may depend on time. I n  the 
experiments, which are carried out in a four-roll mill, the lengthscale characteristic 
of the drop is much smaller than the distance over which significant velocity gradient 
variations occur, and thus the flow is also closely approximated by the form ( 1 ) .  
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For the same reason, a linear approximation of the base flow is also relevant in 
many applications. For the numerical work, we examine the particular case of 
axisymmetric extensional flow where r is diagonal, 

Experimentally, we study two-dimensional linear flows where I' has the form 

(3) 1 ( 0  0 0 

l+a( t )  l-a(t) 0 
r(t)=;~(t) -i++a(t) - i -a ( t )  o . 

The shear rate G represents the magnitude of r and a is a flow-type parameter that 
provides a measure of the ratio of the rate of strain to the vorticity. Typical 
streamlines for different choices of a have been sketched in previous publications 
from our laboratory (e.g. Bentley & Leal 1986b). We note that the ratio of the 
vorticity and strain rate of the undisturbed two-dimensional flow is equal to 
(1  - a ) / ( l  +a) ,  so that a = 1.0 corresponds to two-dimensional extensional flow and 
a = 0 corresponds to simple shear flow. Viscous stresses generated a t  the droplet 
surface cause deformation that is resisted by interfacial tension. The relative 
importance of viscous and interfacial tension forces is measured by the capillary 
number, 62 = G,ua/g, where 0 indicates a representative value of the time-dependent 
shear rate. 

It is convenient to characterize the degree of deformation using a single scalar 
parameter. For this study, we shall consider drops that are significantly deformed 
and in these instances i t  is appropriate to use a dimensionless extension ratio, Lla,  
where 2L is the end-to-end drop length. 

The great majority of studies in the low-Reynolds-number drop deformation 
literature have focused on the steady-state effects of @, A ,  and the tensorial character 
of r. Our present concern is time-dependent behaviour. In  this case, as outlined by 
Rallison (1984), two additional parameters are introduced: the initial shape of the 
drop and the history of the flow as specified by Q). 

The objective of the present work is to understand drop deformation and breakup 
in flows where a sudden change in either the flow strength or the flow type occurs. 
The experimental part of the investigation focuses on step changes in shear rate 
and/or flow type for two-dimensional flows generated in a four-roll mill. 
Complementing the experiments, the boundary-integral method is then used to 
study step changes in shear rate for axisymmetric extensional flows, and illustrates 
the external and internal velocity fields together with the interface evolution. 
Specifically, we examine the effect of initial deformation of the drop on the capillary 
number needed to produce breakup, the effect of vorticity of the imposed flow and 
the role played by the viscosity ratio. 

3. The experiment 
Experimentally, we study drop dynamics in two-dimensional flows generated in a 

computer-controlled four-roll mill. The application and use of this device have been 
documented in three previous publications from our laboratory (Bentley & Leal 
1986a, b ;  Stone et al. 1986). To summarize briefly, the four-roll mill consists of four 
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cylindrical rollers, placed a t  the corners of a square, which are rotated to crcate an 
approximation to a two-dimensional linear flow field in the region betwccn the 
rollers. A drop is placed at the central stagnation point of the flow. Because the drop 
position at the stagnation point is unstable, a control scheme is used to regulate the 
roller speeds in a manner that keeps the drop position fixed while maintaining the 
shear rate and flow type at specified values. This control algorithm has proven very 
effective and we have demonstrated that the small roller speed changes that occur 
produce no observable drop deformation (Stone et al. 1986). Hence, we believe that 
the transient effects seen in this study are strictly due to the programmed changes 
in flow conditions. 

The experimental parameters are such that changes in flow conditions, manifested 
by changes in roller speeds and vorticity diffusion into the fluid, occur on a timescale 
5 0.3 s, which is relatively fast compared with the time, typically 2 1 s, for 
significant drop deformation to occur (Stone et al. 1986). Therefore, a good 
approximation to step changes in flow conditions is produced by abrupt changes in 
roller speeds and we shall refer to the transients as ‘step changes in the flow’. 

The experimental procedure we have followed is to increase the shear rate in small 
increments so that the drop progresses through a series of steady states. When the 
critical shear rate, characterized by non-existence of a steady shape, is reached, 
the droplet slowly extends. At some point, conveniently represented by the 
instantaneous elongation ratio, Lla ,  the flow conditions are altered abruptly to 
subcritical or weaker flow Conditions. In  other words, the shear rate will either be 
decreased or the new flow conditions will have a higher vorticity-to-strain-rate ratio 
(smaller a) .  In  addition, a small number of experiments will be described where 
simultaneous step changes in shear rate and flow type occur. It is only in these 
subcritical flow situations that it is not possible a priori to ‘guess’ the consequence 
of the flow change. However, a few experiments and numerical simulations were 
performed that examined step changes from a critical capillary number to 
supercritical capillary numbers. I n  all cases, the drop was rapidly stretched without 
breaking to the limit of the linear flow region of the four-roll mill. In these 
supercritical flows, the most significant observation was that the ends were not as 
bulbous as when the drop was stretched a t  the critical shear rate, and the midsection 
remained cylindrical. 

For the reader’s reference, the undeformed drop radii are a M 0.1 cm, the 
suspending fluid has a viscosity ,u z 50 g/cm s-l and a density p x 1 g/cm3, and the 
interfacial tensions for the fluid-fluid systems used are B x 5 dynes/cm. The shear 
rates necessary to produce breakup vary with viscosity ratio and flow type ( a )  but 
are generally in the range 0.1-0.3s-l so that 0.1 < C < 0.3. The corresponding 
Reynolds numbers, pua/p2 and pGa2/,u, are typically O( The experiments 
reported here cover the range 0.2 < a < 1.0 and 0.01 < h < 20. 

4 Experimental results: step changes in shear rate 
4.1. Two-dimensional straining jlows, a = 1 .O 

Let us begin the discussion of experimental results by examining the effect of a step 
change in shear rate for a modestly extended drop, the flow type being maintained 
constant. Figure 1 illustrates an abrupt reduction from the critical capillary number 
C,? to  C = 0.5@, at three different initial extensions for h = 0.1 and a = 1.0 (a two- 

t We denote the limiting capillary number for non-existence of a steady drop shape in a steady 
flow as the critical capillary number, @,. 
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dimensional extensional flow for which @, = 0.174). A photograph of the undeformed 
droplet is shown for reference. Dimensionless time is shown to the right of each 
photograph, non-dimensionalized with respect to the interfacial tension timescale 
t ,  = a,u/a.$ This timescale is convenient for comparison of studies a t  different 
viscosity ratios since it remains unchanged as h varies. For parameters typical of the 
experiments reported in this paper t, x 1 s. Whenever a step change in the velocity 
field occurs, time is measured with respect to the instant the change is made. In each 
of the figures the first few photographs show the droplet extending in a steady flow 
a t  the critical capillary number. The droplet shape during this elongation process 
consists of a cylindrical midsection with rounded ends. Then, the shear rate is 
reduced abruptly, as described above. 

In figure 1 ( a )  the subcritical shear rate 0.5@, is not sufficient to cause breakup for 
the degree of extension shown. I n  particular, interfacial tension dominates and drives 
the drop back to a steady shape. So far as we can discern from still photographs of 
the cross-sectional shape of the drop, the new steady shape is precisely the same as 
would be achieved by applying the reduced capillary number, C = 0.5@,, to an 
initially spherical drop. This is true in general. In  all experiments conducted, for 
0.2 < a! < 1.0 and 0.01 < h < 20 and a wide range of shear rate and flow type 
changes, whenever a steady drop shape is achieved, i t  is the same as found in the 
steady-state experiments with the same final flow conditions, and a spherical initial 
shape. 

In  figure 1 ( b )  the drop is slightly more elongated prior to the abrupt change from 
@, to 0.5@, and drop breakup occurs in the flow. Two large daughter droplets are 
formed with a small satellite drop visible in between. The small satellite drop forms 
from the fluid cylinder that connects the two large bulbous ends just prior to 
breakup. It was observed in our previous experiments that breakup via interfacial- 
tension-driven motion in the absence of an external flow occurs only if the initial 
shape is quite elongated. Further, in the presence of a steady motion with C = C,, 
the drop extends continuously, but is not observed to break even when quite extreme 
elongations are produced. Here, however, drop breakup occurs in a flow without 
large-scale stretching of the droplet. 

Finally, figure 1 ( c )  shows how the two competing flow mechanisms, associated with 
interfacial tension and the external flow, interact for a more highly stretched droplet. 
Shortly after the abrupt change in flow, the droplet begins to stretch a t  a rate similar 
to a line element of the fluid, but the ends are continually bulbing and the 
development of a pinching region near the bulbous ends is evident. This pinching 
would presumably lead eventually to droplet breakup if the flow field was main- 
tained, but, in the case shown here, the experiment was stopped prior to this as the 
ends of the droplet approached the limits of the linear flow region of the four-roll 
mill. For clarity, it is convenient to distinguish this stretching process (which pre- 
sumably leads to breakup via pinch-off of the ends) from the complete breakup in 
the absence of stretching that is illustrated in figure 1 ( b ) .  Thus, in the remainder of 
this paper, whenever a subcritical flow causes the droplet to stretch but does not 
produce complete fragmentation during the time the drop remains within the linear 
flow region of the four-roll mill, we shall use the terminology ‘breakup via continuous 
stretching’. After the flow is stopped in figure 1 (c), the droplet fragments according 
to the basic end-pinching mechanism. This aspect of the breakup dynamics, due to 

3 As discussed by Stone et al. (1986), the  zero of time is subject t o  some error due t o  the small 
experimental uncertainty in determining the critical capillary number coupled with the very slow 
elongation process tha t  accompanies stretching at C,. 
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FIGURE 2. The effect of a step reduction in shear rate; the flow type is maintained constant. 
h = 5.1; a = 1.0. Step change from Cc to O.35Cc, C, = 0.12. 

an interfacial tension-driven flow produced by curvature variations along the drop 
surface, has been discussed experimentally and numerically in two previous papers 
from our laboratory (Stone et al. 1986 and Stone & Leal 1989). 

A second example of the relaxation and breakup process following a step change 
in shear rate is shown in figure 2 for a larger viscosity ratio, h = 5.1, and a larger 
change in shear rate from CC down to 0.35@,. Figure 2 ( a )  illustrates a case in which 
the drop relaxes back to a steady shape even though intermediate shapes exhibit a 
pronounced formation of a neck in the middle of the drop that is very reminiscent 
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of figure l ( b ) .  The main difference in this case is that the drop simultaneously 
shortens to a greater extent than in figure 1 (b)  owing to the weaker applied flow. and 
eventually returns to  a steady shape. Figure 2 (b)  shows a case in which the viscous 
drop is somewhat more extended initially. Clearly, the drop breaks in a manner 
resembling figure 1 (b ,  c ) ,  but there is an extended period after the reduction in shear 
rate where the drop shortens and is maintained in ‘dogbone-like’ shape before it 
finally begins to  stretch and develop a pinch near the bulbous end that leads to  
breakup, as shown in the last few photographs. With the larger value of h and the 
weaker flow after the step change, the complete breakup mode without stretching, 
seen in figure 1 ( b ) ,  was never observed in the present experiments. 

The photographs in figures 1 and 2 demonstrate a number of features common to 
all of the step-change experiments we have conducted. Depending upon the value of 
L / a  at  the moment of the step reduction in shear rate, and the magnitude of the 
jump, one of three things may occur. First, below a certain critical value of L / a  
and/or p (where the capillary number after the jump is denoted as PC,), the drop 
shortens and returns to an equilibrium steady shape. Second, if p and/or L / a  is 
increased somewhat, the drop may first shorten and develop bulbous ends, but then 
breaks via ‘ end-pinching ’ with little stretching prior to breakup. Finally, with larger 
values still for /3 and/or L / a ,  the drop just continues to stretch a t  a rate set by 
the new flow conditions and the development of a pinching region, though often 
observed, may not be sufficient to cause breakup within the linear flow region of the 
apparatus. 

Initially one might think that the ‘dogbone ’ conformations, which sometimes 
exist for extended periods of time, may be steady shapes that break because they are 
unstable with respect to small disturbances in the flow (due, for example, to the 
action of the control algorithm). However, the reproducible nature of the phenomena 
in many experiments and numerical simulations (to be illustrated in many figures in 
this paper) suggest that this is not the case. Rather, the complicated dynamics 
simply evolve on a long timescale. These dynamics are a consequence of the 
interaction of the extensional character of the flow, which drains fluid from the 
central cylindrical region while also trying to further stretch the droplet, and an 
interfacial-tension-driven motion, which causes bulbing of the ends and a 
relaxational motion that is reminiscent of the end-pinching phenomenon. Detailed 
velocity fields that illustrate the shape evolution will be presented in the numerical 
study described in $8. 

4.2. Flows with vorticity, a + 1.0 

One question which comes to mind at  this point concerns the effect of flow type. How 
are the previously illustrated dynamics affected if a + 1 ‘1 To answer this question, we 
carried out step-change experiments for a number of fixed values of a + 1. To 
understand the results, it is useful to review the role of flow type in the steady-state 
experiments of Bentley & Leal (1986b), and in the transient experiments of Stone 
et al. (1986). First, in steady flows a t  subcritical capillary numbers, drops initially 
deform along the principle axis of strain for all a, but for a =+= 1, as the capillary 
number is increased, drops gradually reorientate until a t  C - C,, the drop axis is 
aligned along the outflow axis? of the linear flow field. At this orientation the drop 
experiences an effective shear rate G ,  a; (G,  is the shear rate at the critical capillary 
number). Thus, for transient stretching at C - @,, the drop stretches along the axis 
at a rate proportional to (G,  at)-’, but the stretching process and the drop shape are 

t The outflow axis is the direction defined by the eigenvector ofequation (3) with eigenvalue +or$ 
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FIGURE 3. The effect of a step reduction in shear rate; the flow type is maintained constant. 
h = 0.1 ; a = 0.6. Step change from CC to  0.5@, ; CC = 0.23. 

otherwise largely unaffected by the flow type for 0.2 < a < 1.  In view of these results, 
it is clear that the influence of flow type in the present step change in shear rate 
experiments (for fixed a $; 1) must depend on whether a stretched drop remains 
oriented along the outflow axis when the magnitude of the velocity gradient is 
reduced suddenly. 

In order to illustrate the effect offlow type, figure 3 presents a step change in shear 
rate for h = 0.1 and a flow type a = 0.6. The step change in this casc corresponds 
to a decrease from a critical capillary number, C, = 0.23 for this value of a,  to 
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C = 0.5@,. Clearly, the dynamics are very similar to those shown in figures 1 and 2. 
After the decrease in capillary number, the drop remains oriented in the direction 
of the outflow axis even though the same drop, with a steady-state ellipsoidal 
shape appropriate to these conditions (C = 0.5@,), would have an orientation between 
the principal axis of strain (the horizontal direction) and the outflow axis. In figure 3, 
the more elongated initial shape is responsible for the fact that the drop remains 
oriented along the outflow axis even in subcritical flow conditions. 

Figures 1 and 3 correspond to the same value of h = 0.1, and thus provide a direct 
visual comparison of the effect of flow type for a step reduction in shear rate. The 
qualitative similarity evident in the relaxation and breakup process is clear. In  
addition, a series of experiments, including those displayed in figures 1 and 3, was 
carried out to determine the critical initial elongation needed for breakup at h = 0.1 
given a reduction to @ = 0.563,. For the a = 1.0 flow, the critical elongation is 
bounded by 3.0 < L/a  < 3.2, while for the a = 0.6 flow the critical elongation is 
bounded by 3.0 < L / a  < 3.3. I n  fact, for a fixed value of A ,  the critical elongation for 
breakup in a step to C = PC, was found to depend only on /3 and not on the flow-type 
parameter a for a > 0.  Clearly, small detailed changes occur in the shape as the flow 
type varies. Therefore, as a result of the qualitative and quantitative agreement 
observed above, we conclude that the response to a step change in shear rate depends 
primarily on the global features of the drop shape rather than on any local details, 
A similar conclusion was reached in the end-pinching studies of Stone et al. (1985). 

Two additional examples of the effect of a step change in shear rate which further 
corroborate the invariance to flow type are shown in figures 4 and 5 for h = 1.3 and 
h = 5.3, respectively. Figure 4 (a )  shows a step reduction to C = 0.75@, for a flow type 
a = 0.2 and figure 4 ( b )  shows the same step reduction for an a = 0.6 flow. Again we 
observe relaxation back to a steady shape if the droplet is not too elongated and 
breakup via continuous stretching if the step change occurs with the droplet more 
elongated. In  figure 5, step-reduction experiments are shown for C = 0.563, and a 
flow type a = 0.4.  The experiment illustrated in figure 5(b) is well documented and 
shows complete fracturing into two large droplets with a thin thread in between. The 
initial response to the abrupt step change is a reduction in end-to-end length, bulbing 
of the ends, and then a gradual thinning of the droplet midsection with almost no 
change in overall length. Finally, the droplet stretches, the middle region is drawn 
into a very thin cylinder and a pinch process occurs near the ends. The final 
photograph shows the final stage of fragmentation. After the flow is stopped, the 
central thin thread, which has pointed ends, returns to a single droplet. 

The qualitative features illustrated by figures 3-5 are the same as those outlined 
in figures 1 and 2. Furthermore, even after the step change in shear rate, the 
elongated droplet maintains an orientation along t$ exit streamline (the effective 
shear rate for a fluid element a t  this orientation is Car) and this is true even for initial 
L / a  values where the drop eventually relaxes back to an equilibrium shape. In those 
cases where a steady ellipsoidal shape is finally established, the drop relaxes back 
almost to the steady shape prior to rotating away from the outflow axis towards the 
final orientation. As a result of these observations, we may conclude that for changes 
in shear rate only, the primary independent effect of flow type is to determine the 
critical capillary number and the proper timescale of the subsequent relaxation or 
stretching and breakup processes. 

It is informative to study the relaxation and stretching processes illustrated above 
by displaying the dimensionless drop length as a function of time. In figure 6 (a ,  b ) ,  
typical data for Lla  versus time are shown for the cases h = 0.1 and 5.3, respectively. 
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FIQURE 4. The effect of a step reduction in shear rate; the flow type is maintained constant. 
h = 1.3; (a )  a = 0.2; ( b )  a = 0.6. Step change from C, to O.75Cc. 

In the figures, each type of symbol denotes the transient behaviour of a single droplet 
and the horizontal arrows indicate the elongation at which a step change is made 
from critical to subcritical flow conditions. The initial transient stretching is very 
slow and is followed by a rapid elongation when L / a  > 3. In both figures, one case 
is shown in which the change to subcritical flow conditions results in the droplets 
recovering to  a steady shape. However, for each viscosity ratio, a larger initial 
extension leads to breakup. As shown pictorially in previous figures, during the 
breakup process the end-to-end drop length may either remain the same or 
noticeably shorten for a significant period of time. This is followed by a period of 
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FIGURE 5. The effect of a step reduction in shear rate; the flow type is maintained constant. 
A = 5.3; a = 0.4. Step change from CC to 0.5@,. 

continued stretching, which leads, in the cases shown in figure S(a),  to breakup in 
the flow when the symbols terminate. The high-viscosity-ratio experiments shown in 
figure 6 ( b )  are characterized by stretching with the formation of a thinning cylindrical 
midsection, but breakup did not occur during the time the drops remained within the 
linear flow region of the device. The continuous stretching mode is generally observed 
for the more viscous drops as a necessary precursor to fragmentation, since the 
internal flow that leads to the pinch phenomenon is damped. We shall discuss this 
aspect of the breakup of viscous drops more fully using the numerical simulations, 
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FIGURE 6. Elongation ratio Lia as a function of time for (a )  A = 0.1, a = 1.0; ( b )  h = 5.3, a = 1.0. 
The horizontal arrows indicate when a step change in shear rate occurs to the new conditions (a )  
C = 0.5C, : ( b )  C = 0.75C,. The solid line denotes asymptotic stretching similar to a fluid element 
in the new flow conditions. 

$8. The slope of the vertical lines adjacent to the stretching data in figure 6 denote 
a rate of stretching equal to a line element of the fluid in the new flow conditions. 
After the period of adjustment to the weaker flow, the droplet again begins to rapidly 
stretch a t  a rate that asymptotes to that of a fluid element in the new flow conditions. 
Finally, in the cases where relaxation back to  a steady shape occurs, the drop length 
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New flow Critical elongation 
conditions for breakup 

L 
3.4 < - < 4.5 

a 
L 

3.14 < - < 3.35 
a 

O @ C  

0.2@, 

L 
2.93 < - < 3.2 

a 
0.44=, 

L 
2.44 < - < 2.66 

a 

L 
2.08 < - < 2.25 

a 

0.65@, 

0 . 9 q  

L 
shape a 

Final steady - -X  1.6 

TABLE 1 .  The critical elongation necessary for breakup as a function of a change from stretching 
a t  the critical capillary number to subcritical flow conditions; step reduction in shear rate only. 
h = 0.46. 

decreases monotonically and we have made no observations (experimentally or 
numerically) of any behaviour similar to the ‘inertial overshoot ’ discussed by Kang 
& Leal (1987) for the finite-Reynolds-number problem. 

4.3. Varying the magnitude of the step change in shear rate 
The experiments just outlined imply that the capillary number necessary to produce 
breakup is dependent on the initial drop shape, as indicated by the elongation ratio 
L / a  at the time the flow field is changed, but is otherwise independent of the flow 
history (assuming, of course, that this history does not lead to drastically different 
drop shapes that cannot be parameterized by L l a ) .  This behaviour is entirely con- 
sistent with the properties of Stokes equations for which the instantaneous velocity 
field, and consequently the drop shape evolution, depend only on the instantaneous 
imposed flow and shape. The history of the flow is only important insofar as it 
produces a definite initial shape. An important question is the dependence of the 
critical elongation on the magnitude of the step change in the capillary number. Two 
typical sets of experimental results for the dependence of the critical extension ratio 
necessary for breakup (either complete fragmentation or breakup via the continuous 
stretching mode) as a function of the magnitude of the step change in shear rate are 
summarized in table 1 for the case h = 0.46 and in table 2 for the case A = 5.3. 
Qualitatively, the weaker the external flow, the more extended the drop must be to 
cause breakup. As noted earlier, the results in tables I and 2 hold for all flow types 
(a  > 0) provided the flow history consists of a step reduction in shear rate only. 
Perhaps the most significant aspect of the data in these two tables is the fact that 
even a weak flow can produce breakup for A = 5.3, generally via the continous 
stretching mode, without requiring a large initial elongation, in spite of the fact 
that an elongation L / a  M 8 is necessary to guarantee breakup if the flow is 
stopped completely. These results demonstrate that  even weak extensional flows can 
lead to the continuous stretching and breakup of a viscous drop that has a modest 
initial deformation. 
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Sew flow Critical elongation 
conditions for breakup 

L 
7.6 < - < 8.2 

a 

L 
3.21 < - < 3.38 

a 

L 
2.57 < - < 2.95 

a 

oa=c 

0.35C, 

0.5@, 

L 
2.0 < - < 1.6 

a 
0.75@, 

c 
shape a 

Final steady - -x 1.6 

TABLE 2. The critical elongation necessary for breakup as a function of change from stretching 
a t  the critical capillary number to subcritical flow conditions; step reduction in shear rate only. 
h = 5.3. 

4.4 Effect of viscosity ratio 
Finally, we address the effect of viscosity ratio with particular attention given to 
larger viscosity ratios. In our previous study (Stone et al. 1986), which only 
investigated transient behaviour following an abrupt halt of the flow, the effect of 
high viscosity ratios was to severely damp the internal motion which leads to the 
development of a neck and thus to breakup via the end-pinching mechanism. 
Consequently, very much larger extensions were necessary to  guarantee breakup of 
viscous drops ( A  2 5 )  in an otherwise quiescent fluid relative to cases with h = O( 1 ) .  
However, as illustrated above in table 2, figure 5 and figure 6(b), if the flow is 
not altogether stopped, but rather reduced to a subcritical value, even modest 
elongations can lead to drop breakup. Furthermore, the experimental data presented 
so far suggest that the critical extension necessary to guarantee breakup or, a t  least, 
to continue the stretching process, appears to become almost independent of h for 
h > O(1).  This behaviour is further illustrated in figure 7 where the experimental 
results for a step change to C = 0.75@,, covering three orders of magnitude of 
viscosity ratio, are summarized. The open symbols refer to complete cessation of 
flow, and denote the largest elongation ratio for which the drop relaxes back to a 
sphere (the squares) and the smallest elongation for which breakup was observed (the 
triangles). Similarly, the filled symbols refer to a decrease in C to 0.75@,. In  this case, 
the squares represent relaxation back to a steady shape and the triangles represent 
breakup, either via complete fragmentation in the flow or breakup by the continous 
stretching mode. The dotted line denotes the maximum elongation of the most 
deformed steady shapes observed by Bentley & Leal (1986b). As tables 1 and 2 
document, the qualitative response to  a step change in the velocity gradient 
illustrated in figure 7 is representative of a wide range of step sizes. In spite of the 
fact that the critical extension for onset of breakup is independent of h for h > 0(1), 
however, it is nonetheless true that complete fracturing in the flow takes a much 
longer time for large h and is most often accompanied by large-scale stretching. In  
this regard, the actual breakup of viscous drops via flow is still seen to be more 
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FIGURE 7. Critical elongation ratio necessary to ensure breakup as a function of viscosity ratio. 
Both an abrupt halt of the flow (C = OC,) and a step change in shear rate to the new flow conditions 
C = 0.75@, are examined. The open triangles denote the smallest L/u  for which a drop was 
observed to breakup and the open squares denote the largest L / a  for which a drop relaxed back 
to a steady (spherical) shape when the flow was abruptly stopped. The filled triangles and squares 
represent similar behaviour for the case that the change is made to the subcritical conditions 
C = 0.75@,. 

difficult for drops with large h-values than for drops with h = O(1). It is perhaps 
worth emphasizing again that all of these conclusions remain true for all flow types 
with 01 > 0, provided the flow history consists of a simple step change in shear rate. 

5. Experimental results: step changes in flow type 
We have examined time-dependent dynamics associated with step changes in 

shear rate. An equally important question is how the drop shape evolution is 
influenced by changes in flow type. Here we specifically address questions concerned 
with abrupt changes in flow type, with the shear rate being maintained constant, so 
that the new flow conditions are subcritical. Recall that as the flow type changes 
from a hyperbolic flow (a = 1.0) towards a simple shear flow (a = 0), the addition of 
vorticity causes a drop to rotate away from the principal axis of strain. Thus, the 
effective shear rate experienced by the drop is reduced and the effective capillary 
number becomes subcritical. Again, in these experiments changes in flow conditions 
are applied with a drop undergoing a transient stretching at the critical capillary 
number. The computer-controlled four-roll mill in our laboratory is one of the few 
(only 2 )  devices currently capable of performing such a study in a well-controlled 
manner. 

Figures 8 , 9  and 10 show the effects of a step change in flow type for three different 
viscosity ratios, h = 0.1, 1.3 and 5.3, respectively. These photographs are typical of 
the experimental results. The breakup processes are obviously similar to those 
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FIGURE 8. The effect o f a  step change in flow type; the shear rate is maintained constant, 
h = 0.1. Step change from a = 1.0 to a = 0.2. 

described in figures 1-7. In figures 8-10 the step change in flow type is followed by 
rapid rotation to a steady orientation after which the observed behaviour is either 
(1) relaxation back to a steady shape, (2) breakup in the flow without large-scale 
stretching or (3) continued stretching and breakup. No new steady shapes are 
observed and the steady orientation achieved by the droplets is along the outflow 
axis of the new flow field. The rotation process is documented clearly in figure 10. 
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FIGURE 10. The effect of a step change in flow type; the shear rate is maintained constant. 
h = 5.3. Step change from a = 1.0 to a = 0.25. 

Clearly, the most significant new dynamical feature associated with the sudden 
addition of vorticity is that for these modest deformations and the small capillary 
numbers a t  which the step change occurs, drop rotation appears very rapid relative 
to any significant deformation.? 

f As an aside, for those readers interested in geometric aspects of free surfaces, the photograph 
of the droplet just as it is fracturing in figure 8 ( b )  shows a narrow conically shaped central 
thread attached to an almost spherical droplet. This is very similar to an observation of Peregrine 
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As a consequence of this rapid rotation, relative to any significant interfacial- 
tension-induced change of shape, the drop aligns along the outflow axis where the 
effective shear rate is Gat. Thus, the introduction of a step change in vorticity 
appears to be equivalent to a step change in shear rate from Cc to a reduced value 
equal to a k , .  An obvious question is then whether the critical extension Lla ,  
necessary for breakup, remains the same for the same fractional decrease in capillary 
(or effective capillary) number. 

We have not performed a large number of experiments to explore this point. 
However, in all the experiments performed, the critical length for breakup, given 
only a step change in shear rate G, is nearly the same as for a given change in af. 
For example, in experiments with h = 0.46, a step change from a = 1.0 to a = 0.4 
(at = 0.63) showed rapid rotation to the new steady orientation along the outflow axis 
and a critical extension ratio for breakup 2.35 < L / a  < 2.57, which compares very 
well with the data illustrated in table 1 for a change in G to O.65Gc. This suggests 
that for these modestly extended drops, step changes in either G or a will have a 
comparable effect provided that they correspond to the same change in Gat. The 
dynamical reason for this suggestion is the fact that the droplet is oriented along the 
outflow axis (the eigenvector) of the new flow during almost the entire period of 
the transient change in shape. If correct, it  implies that when both shear rate 
changes and flow type changes occur simultaneously, the critical extension ratio for 
breakup should depend only on the effective capillary number in the modified flow 
C,,, = Gaip.u/v. 

The observation that a sudden addition of vorticity leads to rapid rotation relative 
to any significant drop deformation, at least for h = 0(1), may appear somewhat 
surprising. Although a general analytic solution is not available for the orientation 
of a finitely deformed drop in a linear flow, useful ideas can be obtained by 
considering a solid ellipsoid of revolution (cf. Bentley & Leal 1986b). A solid particle 
in a linear shear flow will h h e  an angular velocity proportional to G, so the time to 
rotate from an initial orientation to a final steady orientation should scale with the 
inverse of the shear rate G-l. This is comparable with the timescale for deformation 
only if the droplet is highly extended, in which case the drop is observed to extend 
a t  a rate similar to a fluid element in the flow. The key fact with regard to our 
observations in these experiments is that the stretching process at the critical 
capillary number is very slow initially (see the discussion in Stone et al. 1986) and the 
droplet does not begin to behave similarly to a fluid element until L / u  > 3.  Typically, 
for a rapid addition of vorticity when the droplet is only modestly deformed (say, 
L / a  x 2-3, as in these experiments), the timescale for deformation is much longer 
than G-l (see figure 6) and the rotation to a new orientation can be decoupled from 
the deformation process. Once the drop is reoriented, however, the effective shear 
rate in the new flow is Gat (Bentley & Leal 1986b). 

(1986) on the shape of the liquid bridge joining a nascent drop to the remainder of the fluid, 
although viscous effects in Peregrine’s experiments are generally insignificant. The conical interface 
is also very similar to intermediate shapes observed in the formation of satellite drops due to 
capillary wave growth on cylindrical fluid interfaces (Goedde BE Yuen 1970 and Van Dyke 1982). It 
suggests that conically shaped surfaces created during the evolution of fracturing interfaces may 
be a general geometrical phenomena. Additional examples can be seen in figures 2-5 and figure 
11 (b ,  c). However, we have not investigated this matter further. 
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6. Experimental results: simultaneous step changes in shear rate and flow 
type 

In order to further test the idea of an effective capillary number 

C,,, = Ga,ua/cT = Caf 

for describing the dynamics of drops in the simple transient flows studied here, we 
present some experimental observations on simultaneous step changes in shear rate 
and flow type. First, i t  should be re-emphasized that the validity of the correlation 
of drop behaviour and an effective capillary number depends on the disparate 
timescales governing different aspects of the dynamics. Because the drop shape 
evolution depends on the global shape rather than details of the shape, then, 
provided rotation to a new steady orientation is sufficiently fast relative to the 
timescale for any significant overall deformation (due either to interfacial tension or 
an external flow), the breakup criteria can be stated entirely in terms of the initial 
elongation L / a  and an effective capillary number C,,,. 

In  figure 11 (a ,  b )  we show the results of step changes from an initial condition 
C = C, and a = 1.0 to  a final condition C = 0.8@, and a = 0.6. Figure 11 (c) illustrates 
the effect of a step increase in the actual capillary number to C = 1.3C, but with the 
flow type changed from a = 1.0 to a = 0.25 so that the effective capillary number is 
reduced. The drops in figure 11 have a viscosity ratio h = 0.46. In  the first case (figure 
11 a ,  b )  the effective capillary number characterizing the new flow conditions is 
Ceff = 0.62C, and in the latter case (figure l l c )  Ceff = 0.65@,. As discussed in the 
description of the experiment (§3), the time for flow field modification following a 
step change in flow conditions is fast compared with the time typical of the drop 
deformation and rotation and this is also true for the 30 % step increase in shear rate 
studied here. 

We make the following observations concerning the effects of simultaneous 
changes in shear rate and flow type. In  figure 11 (a ) ,  after the step change in flow 
conditions, the droplet relaxes back to  a steady shape. However, during the 
relaxation process, the droplet develops a ‘waist ’ due to the external flow trying to 
drain fluid from the drop centre. Eventually, though, the relaxational motion, driven 
by the ends, dominates and a steady shape is established. Figure 11 ( b )  illustrates the 
effect of a slightly more elongated initial shape. The droplet first reorients prior to 
any significant deformation, then breaks in the subcritical steady flow in a manner 
reminiscent of many of the earlier figures. 

In figure 11 (c), as the droplet rotates away from the extensional axis, it initially 
feels a stronger effective shear rate since the shear rate was increased to 1.3G,. The 
droplet reorients and deforms a little, then rapidly begins to stretch and eventually 
fractures in the flow.? Again, we observe a conically tipped thread a t  the end of the 
central portion of the droplet connected to the deformed spherical end shortly before 
the final fragmentation is complete. After the flow is stopped the central thread 
relaxes and fragments leaving the small satellite drops shown in the last photograph. 
Figure 11 (6,  c) appears to be very close to the critical length for breakup which we 
estimate in both cases to be L / a  x 2.4-2.6. This estimate of the critical length for 
breakup a t  C,,, = 0.65@, is in good agreement with the data reported in table 1 that 
account,s only for a step change in shear rate. 

t The size of the drop shown in figure 11 (c) is smaller than the drop in figure 11 ( a ) ,  but the 
dimensionless elongation ratio L / a  at the time the flow field is changed is slightly larger. 
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FIGITRE 12. The effect of a simultaneous change in shear rate and flow type. h = 0.46. 
Step changes from CC to  0.4@, and a = 1.0 to a = 0.25. 

In  figure 12 we show another sequence of simultaneous changes in flow type and 
shear rate. For this droplet, h = 0.46, the shear rate is reduced from G, to O.W, 
and the flow type simultaneously changed from 01 = 1.0 to 01 = 0.25. The effective 
capillary number a t  the new flow conditions is C,,, = O.2Cc. First, figure 12(a) 
provides an example of a waist forming initially due to the external extensional flow, 
only to eventually be overwhelmed by the inward capillary-driven flow generated by 
the bulbing ends. Figure 12 ( 6 )  appears to be very close to the critical length necessary 
for breakup as the droplet fractures in two with a very small satellite droplet in 
between. Also, the droplet has a shorter end-to-end length a t  breakup than the initial 
length a t  the time the step change in flow conditions occurs. The critical length for 
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breakup, as bounded by the two sets of photographs in figure 12, is 3.2 < L / a  < 3.3, 
which is again in good agreement with the data in table 1.  Therefore, it appears clear 
from the experiments performed using simultaneous step changes in flow conditions, 
in conjunction with the effect of viscosity ratio, shear rate and flow type described 
in $3 4 and 5 that the effective capillary number a t  the new flow conditions is useful 
for predicting breakup behaviour for a given initial shape, provided only that droplet 
rotation to a steady orientation is sufficiently fast. 

One should expect that  the above timescale assumptions would begin to break 
down for a sufficiently large increase in G and a corresponding decrease in at, based 
upon the supposition that the drop would spend a significant length of time in a very 
strong flow as it rotates to the final steady orientation. Nevertheless, a t  least in the 
case illustrated in figure 11 ( c ) ,  the breakup behaviour was still well correlated with 
Cerr. The viscosity ratio will also play a role in such timescale arguments as viscous 
drops deform more slowly than lower-viscosity-ratio drops. In  the case of large 
viscosity ratios, the difference between reorientation and deformation timescales will 
be even larger than illustrated in figures 11 and 12, and the idea of an effective 
capillary number should be even better for very viscous droplets. However, inviscid 
drops ( A  < 1) are characterized by very long, slender shapes with nearly pointed 
ends and, in response to a subcritical flow, the relaxational motion, driven by large 
curvature variations near the ends, occurs on a timescale comparable with the 
rotation time so that the idea of disparate timescales breaks down in this case. From 
the above arguments we conclude that the critical extension data tabulated in tables 
1 and 2 and figure 7, which were determined from experiments involving step 
changes in shear rate only, should be equally useful for the broader class of flows 
involving simultaneous changes in shear rate and flow type, provided only that the 
interpretation is based upon the effective critical capillary number Cey as described 
above, and the drops are not initially too deformed (i.e. Lla  < 3). 

7. Experimental results: breakup for large h in weak flows with vorticity 
As pointed out by Taylor (1934) for the case of simple shear flow, the effect of 

vorticity in a steady flow is to inhibit breakup of a drop which is initially spherical 
or nearly spherical in shape. Indeed, for sufficiently high viscosity ratios, droplets 
attain a maximum steady deformation in all two-dimensional flows with vorticity 
and any additional increases in capillary number are only accompanied by increased 
rotation of droplet fluid rather than by any noticeable deformation. For example, in 
simple shear flow, breakup is not possible if the viscosity ratio exceeds approximately 
4 and for a = 0.2 and 0.4 breakup is not possible for viscosity ratios above 
approximately 20 and 60, respectively (Bentley & Leal 1986b).. 

An obvious question in the context of the present study is whether high-viscosity- 
ratio drops can be broken in flows with vorticity if the initial deformation exceeds the 
maximum stable deformation that is observed in the steady-state experiments. 
Clearly, if viscous drops are very highly extended prior to application of a flow with 
vorticity, previous photographs and discussion in this paper should suggest that 
breakup would be possible if the product Gai is sufficiently large. Here, we consider 
an initial condition that is more deformed than the maximum steady deformation, 
but still not highly stretched. 

In figure 13 we report the results of an experiment for h = 19. For reference, a t  the 
top of the figure we show a photograph of the maximum steady deformation 
attainable by beginning with a spherical drop and increasing the capillary number in 
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FIGURE 13. Breakup of a very viscous droplet beginning with a shape tha t  exceeds the maximum 
steady deformation. h = 19.0, a = 0.2, C = 0.3. If the initial shape were spherical, no breakup 
would occur and the droplet would reach a limiting deformation shown by the first photograph. In  
such instances, increases in capillary number only lead to more rapid fluid rotation rather than 
increasing deformation. 

small increments (i.e. the steady experiment described by Bentley & Leal 1986b). In 
the bottom part of the figure, we examine the breakup of the same drop in the same 
flow when the drop is first deformed to a more highly elongated initial shape by a 
stronger flow. The initial elongated shape is generated by stretching the drop in a 
purely extensional flow (a  = 1.0) a t  the critical shear rate so that unsteady stretching 
occurs. Then, the flow is abruptly stopped, the droplet begins to relax and a steady 
flow field with a = 0.2 is applied. The photographs shown illustrate that the droplet 
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reorients along the outflow axis of the a = 0.2 flow and continues to stretch. It must 
be remarked that the rate of elongation, produced by this weak flow coupled with 
the high viscosity ratio, is very slow. The experiment does not represent the lowest 
possible capillary number for breakup given the non-spherical initial condition, but 
does show that different initial conditions, even modest initial deformation, can lead 
to breakup of very viscous drops where simple steady approaches to breakup would 
never succeed. 

8. Numerical study of step changes 
The numerical study we present here is designed to complement the basically 

qualitative description of the dynamics that was demonstrated by the series of 
experiments described in the preceding sections. The numerical simulations illustrate 
systematically the detailed features of the external and internal flow fields during the 
evolution of the drop shape. Also, in these step-reduction studies, it is straight- 
forward to vary the magnitude of the subcritical flow for precisely the same initial 
shape or to vary the initial shape for an instantaneous change to a given subcritical 
flow, and both types of simulations are shown below. 

8.1. Numerical procedure 
A powerful numerical scheme for this type of free-boundary problem is the 
boundary-integral method, first applied to the drop deformation problem by 
Rallison & Acrivos (1978). This method is particularly suitable as only the drop 
surface needs to be discretized rather than the entire domain and, consequently, 
interfacial velocities are calculated directly. Details of the application of the method 
to the drop deformation problem can be found in Stone & Leal (1989). The interfacial 
velocity is calculated from the integral equation 

where V , . n  represents the mean curvature of the surface S ,  n is the unit normal 
directed from the droplet phase to the suspending phase and x ,  denotes a point on 
the fluid-fluid interface, x , E S .  In this equation, all velocities have been non- 
dimensionalized with respect to u, = alp,  lengths with respect to the undeformed 
radius I, = a and time by the convective timescale t ,  = lc/uc. Also, rrepresents the 
dimensionless velocity gradient tensor, equation ( l ) ,  non-dimensionalized with 
respect to the shear rate 

For the axisymmetric drop shapes we shall examine here, the azimuthal integration 
is performed analytically so that the surface is reduced to a line integral. Given the 
drop shape, (4) is an integral equation of the second kind for the unknown u. This 
equation is solved by discretizing the surface and converting (4) to an equivalent 
linear system of equations that is solved by standard Gaussian elimination 
techniques. The interfacial velocity field is used to evaluate the interior and exterior 
velocity fields which are helpful in understanding detailed features of the drop shape 
evolution. 

Since the boundary-integral method is derived from the quasi-steady form of 
Stokes equation, the application of this numerical technique to time-dependent 

prior to the step change. 
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problems implicitly assumes that inertial effects due to the unsteady nature of the 
motion are negligible. This is indeed true provided that the timescale for vorticity 
diffusion, pa2/,u, is much shorter than both the time characteristic of drop 
deformation, ,u( 1 + A )  a / a  and the time representative of convective effects in the 
external flow, G-l. Therefore, we require paa/,u2(1 + A )  < 1 and pQa2/,u < 1.  

8.2. Changes in initial elongation for given step reduction in G 
We begin by examining droplet extension in a uniaxial extensional flow. Starting 
with a spherical droplet, the capillary number is increased in small increments until a 
steady shape no longer exists and a continuous stretching process occurs. Then, a t  
different stages of the elongation process, the capillary number is decreased abruptly 
to a subcritical value, analogous to the experimental study described in $ 4. Two 
different viscosity ratios are examined, h = 1.0 and h = 10. The calculations with 
h = 1.0 are especially straightforward and capture all of the important qualitative 
features of the shape evolution and the velocity field. The study of h = 10 is useful 
for understanding the observed differences in the relaxation and breakup processes 
for very viscous drops in subcritical flows relative to experiments where the flow 
is stopped abruptly (Stone et al. 1986). Studies of drop deformation in biaxial 
extensional flows are also straightforward numerically, though not realizable 
experimentally in the four-roll mill, but these involve a number of new issues that 
will be discussed in a separate publication (cf. Stone 1988). 

In figures 14 and 15, we illustrate the results of our numerical calculations for 
h = 1 and 10, respectively. The solid curves show the time-dependent elongation that 
occurs a t  slightly supercritical capillary numbers. The evolution of the drop shape is 
also shown a t  intermediate times during the transient stretching process. The shapes 
are identified by the letters a, b, c, etc. Characteristically, the elongation is very slow 
initially. But, as a waist develops, the drop begins to stretch rapidly approaching 
the asymptotic limit of stretching a t  the rate of a line element of the fluid in the 
undisturbed flow (the solid nearly vertical line in these figures). 

The effect of abruptly decreasing the capillary number a t  different times during 
the continuous extension can be seen in figures 14 and 15. In  each case, we consider 
a step change to C = 0.5@, for three different initial conditions. The resulting 
evolution is shown by the dashed lines in figures 14 and 15 and by the numerically 
generated shapes that are presented. As indicated in the experimental study, there 
appear to be three modes of behaviour. In  each figure, curve A shows the relaxation 
back to a steady shape. This is the same steady shape as calculated by beginning with 
a spherical drop in this subcritical flow. Curve B illustrates the time-dependent 
breakup mode in which the drop initially shortens in length as the ends become 
rather bulbous. In  figure 14, h = 1.0, the formation of a significant neck leads to 
complete breakup in the flow although the drop has extended very little. In  addition, 
the thin cylindrical thread connecting the two almost spherical ends forms a small 
satellite drop. This illustrates breakup in a steady flow without large-scale stretching 
of the drop, similar to several of the experiments discussed in $ 4 .  On the other hand, 
for h = 10, curve B initially shows similar behaviour to  h = 1, but the tendency 
toward pinch-off of the ends is inhibited and the drop begins to elongate a t  the 
rate of a line element of the fluid. This behaviour corroborates the experimental 
observation that drops of large viscosity ratio generally do not appear to undergo 
breakup without first undergoing a large degree of stretch. Finally, for the initial 
condition used for the curves C, the droplet has a very small initial relaxation as the 
shape at the end responds to the weaker velocity gradient by becoming more 
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bulbous, but without significant shortening prior to undergoing rapid extension. In 
the case of h = 1.0, it is evident that the ends are pinching off, but the drop is 
simultaneously beginning to stretch. However, the h = 10 droplet stretches during 
the time shown and there is no evidence of the ends breaking off. This is again related 
to the fact that the flow process internal to the droplet that leads to the end-pinching 
phenomenon is damped by the more viscous droplet fluid. Consequently, thc cnd- 
pinching mechanism requires longer times for breakup of high-viscosity-ratio 
systems so that, instead of fragmentation, deformation in the weak flow is 
characterized by a significant increase in the end-to-end drop length. Finally, the 
dashed almost vertical line adjacent to curve C in figures 14 and 15 illustrates 
the rate at which a fluid element stretches in the new flow conditions. Evidently. 
the droplet elongation approaches this asymptotic bchaviour once i t  develops a 
significant waist. 

In all cases, the numerical results indicate that the curvature near the end 
decreases (i.e. the end becomes more rounded) in response to the abruptly weaker 
flow. This is true even in instances where the drop responds by continuing to stretch, 
so that the end becomes more spherical as the drop elongates. The simulations also 
indicate, in agreement with the experimental results discussed in $$ 4-6, that there 
is a narrow range of initial elongations for which the drop shortens initially, but then 
eventually stretches again, leading to breakup. Although there are cases in which 
breakup occurs without stretching owing to the interaction of the extensional flow 
and the interfacial-tension-driven flow, the range of initial conditions that lead to 
complete breakup without stretching is extremely narrow for viscous drops in 
which the flow process leading to end-pinching is inhibited. Nevertheless, in the 
experimental study, several cases of complete breakup of high-viscosity-ratio drops 
with relatively little extension have been documented (figures 2, 5 and 10). 

8.3. Evolution of the velocity field during relaxation and breakup 
In  order to  better understand the evolution of the drop shape, we present the internal 
and external velocity fields in figures 16 and 17 for the intermediate shapes shown 
along curve B in figures 14 and 15. The arrows denote the direction and relative 
magnitude of the fluid velocity, but there is no connection between arrows in one 
illustration and those in another. The ‘competition ’ between the externally imposed 
flow and the interfacial-tension-driven flow is clearly evident,. For example, the 
competition between these two mechanisms produces a closed vortical motion interior 
to the droplet (figure 16a-c). Figure 16(a) shows the velocity field just after the 
abrupt change in shear rate. Initially, the most noticeable motion takes place near 
the ends of the droplet. The ends become more spherical and drive a large inward 
velocity. Near the droplet centre, the external flow produces an extensional motion 
which causes the droplet to form a waist and continually thin. The precise role of the 
interfacial-tension-driven flow field will be examined in detail below. As the end 
becomes more rounded the driving force for inward motion becomes weaker while the 
drop continues to thin. In  figure 16(c) the drop is beginning to lengthen slowly and 
a visible neck is formed near the bulbous end. This neck will eventually lead to the 
ends pinching off and the remaining liquid thread in the middle will form at least one 
satellite drop. At t = 113.8 the fluid velocity in the neighbourhood of the pinch is 
much larger than the speed at which the end translates. This is responsible for pinch 
off without large-scale stretching of the droplet. At least in the central section of the 
drop the velocity profile is parabolic, as expected from a slender-body analysis 
(Acrivos & Lo 1978). Qualitatively, very viscous drops have much flatter interior 
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FIGURE 16. Numerical simulation of the internal and external velocity fields during the relaxation 
and breakup of a droplet after a step reduction in capillary number; h = 1.0; C = 0.5@,. The 
simulations correspond to the intermediate shapes shown along curve B in figure 14. 

velocity profiles than do smaller viscosity droplets. I n  the A = 10 simulation shown 
in figure 17 there is no pinch evident. Presumably, for the initial condition chosen, 
longer times, hence more elongated droplets, are necessary before a significant pinch 
can develop for this case. 

In  these stimulations of a step reduction in shear rate, the mechanism of the 
breakup process can be seen to  involve an interaction between an interfacial-tension- 
drive flow and a flow produced by the external velocity field. The net effect is both 
competitive and cooperative depending on the region of the drop and the stage of the 
interface evolution. In  order to illustrate this last point we examine the contributions 
to the two components of the interfacial velocity field (uT, u,) at different times 
during the breakup process for the cases h = 1.0 and h = 10, whose velocity fields 
were shown in figures 16 and 17. In  figure 18(a-c), we show the r-component of the 

8-22 
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FIGURE 17. As figure 16 but for A = 10.0. The simulations correspond to the intermediate 
shapes shown along curve B in figure 15. 

interfacial velocity field as a function of axial position and in figure 18 (d-f ) we show 
the z-component. In  these figures the solid line is the ‘exact ’ numerically calculated 
interfacial velocity, the dotted line is the undisturbed velocity and the long-dashed 
line is the difference between the actual velocity and the undisturbed velocity. In the 
case A = 1, this difference is attributable to the flow produced by interfacial tension 
as a consequence of curvature variations along the surface (see (4)). For h = 10, the 
interpretation is more complex, as we can see from (4). 

In  figure 18(a) the decomposition is shown just after the step reduction in shear 
rate occurs and in figure 18(b,  c) the results are shown at later times. Relaxational 
flows are characterized by u, < 0 and the pinching process is produced by u, < 0. The 
first feature to notice is that, at  first (i.e. figure 18 a )  the flow produced by interfacial 
tension (the long-dashed line) opposes the thinning of the cylindrical midsection. 
This is evident from the fact that the interfacial-driven contribution to the radial 
velocity component near the centre of the drop field is positive, and the contribution 
to the axial velocity field is negative, corresponding to flow towards the centre. 
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The later stages of the breakup process are examined in figure 18(6, e ) .  As the 
middle region thins the resistance to  stretching, due to  the interfacial-tcnsion-driven 
flow, diminishes. In figure 18(c), where the midsection is thin, a cooperative flow is 
produced where both the external flow and the interfacial-tension-driven flow (which 
only depends on the instantaneous drop shape and A )  result in fluid draining from the 
centre. This is illustrated by the negative values of u, and positive values of uz near 
the middle of the drop. In  figure 18 (b )  the contribution of interfacial-tension-driven 
flow to the thinning of the drop midsection (u, c 0) is small, while a t  the later time 
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FIGURE 18 ( c ,  d ) .  For caption see facing page. 

shown in figure 18(c) the rapid pinching is predominately due to  the interfacial- 
tension-driven flow. The evolution of the velocity field shown in figure 19 for h = 10 
is similar. The main difference for this high viscosity ratio is that  the internal velocity 
gradients are damped significantly. As a result, the radial velocity field that produces 
thinning of the midsection is weaker than in the h = 1 case, and it takes longer for 
the interfacial-tension-driven flow to  dominate and produce the end-pinching effect. 

It is important to point out that  the undisturbed flow field alone does not produce 
complete fracturing. Rather, the extensional undisturbed velocity field results in a 
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FIGURE 18. The contribution of an interfacial-tension-driven flow to the drop breakup process; the 
volution of the velocity field. -, numerically calculated interfacial velocity as a function of axial 
position ; . * * 9 - - , contribution of the external flow ; - - - - - , difference between the actual velocity 
and the external velocity. h = 1.0. ( a s )  u, ws. z ;  (d- f )  u, 0s. z. 

simple stretching of the droplet and, as discussed by Mikami et al. (1975) for the 
special case of an infinite, uniform-radius cylindrical thread, such a flow uniformly 
thins the cylindrical body of fluid. The fracturing process is a direct consequence of 
the non-uniform flow produced by curvature variations along the drop surface. It is 
also clear, though, that the weak external flow is necessary initially to cause thinning 



258 H .  A .  Stone and L.  G .  Leal 

0.015 

0.010 

0.005 

- 0.005 

J 

- 0 . 0 2 0 ~ " " ' " " ~ " " " " " " " " " ' ' ~ ~  
0 0.20.40.60.8 1.0 1.2 1.4 1.6 1.82.02.22.4 2.6 2.8 3.0 3.2 3.4 

1 

0.020 

0.015 

0.010 

0.005 

-0.005 

-0.010 

-0.015 

- 0 . 0 2 0 ~ ~ ' " " " " " " " " " " " " ' ' " ' ~  
0 0.20.40.60.8 1.01.2 1.41.61.82.02.22.42.62.83.03.23.4 

FIGURE 19(a,b). For caption see page 260. 
z 

of the drop midsection until the interfacial-tension-driven flow takes over and 
produces breakup. 

8.4. Varying the step reduction in G for a given initial shape 
In the preceding sections, we have focused primarily on variations of the initial 
degree of drop extension for fixed flow conditions. A second aspect of the transient 
dynamics that we wish to study is the effect of the magnitude of the shear rate 
reduction for a given initial drop shape. In figures 20 and 21 we illustrate the dynamics 
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of a series of drops with h = 1.0 and 10 and a fixed initial elongation L / a  !Z 3, for 
step changes in capillary number ranging from C, to PC, where 0.25 < /3 < 1.0. In  every 
case where the drop relaxes back to a steady, ellipsoidal shape it does so 
monotonically and we find numerically that it is the same steady shape as would be 
generated if an initially spherical drop were placed in the same subcritical flow 
conditions. This is reported in the inset to these figures where the deformation 
parameter D t  is compared for the case of it spherical drop placed in the flow C = PC, 

t D = ( L - B ) / ( L + B )  where L and R are the half-length and half-breadth of the drop, 
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(denoted as Dss) and for the transient approach to the steady state shown in figure 
20 and 21 (denoted as Dt,,,,). 

Clearly, figures 14-21 show that there is a complicated interaction between 
interfacial-tension-driven relaxation, dependent on the drop shape and the viscosity 
ratio, and the external extensional motion, which is dependent basically on the 
capillary number and the initial shape. The numerical results indicate that there is 
a narrow range of capillary numbers where breakup is preceded by a visible reduction 
in end-to-end length. 
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9. Conclusions 
In this paper we have presented an experimental and numerical investigation of 

the effect of subcritical flows, produced by step changes in shear rate or flow type, 
on the breakup of drops stretched initially beyond their maximum steady 
deformation, The concept of an effective capillary number, based on the new flow 
conditions, has proven useful for describing necessary conditions for breakup and 
this is even true in situations where the drop is caused to rotate due to the sudden 
addition of vorticity. The boundary-integral method is used to visualize the velocity 
fields during the shape evolution, and clearly illustrates the influence of the external 
motion and the relaxational interfacial- tension-driven motion on the breakup 
process. 
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